PRECLINICAL SAFETY STUDIES OF 213Bi LABELED PAI2 FOR TARGETED ALPHA THERAPY OF CANCER

Rizvi SMA1, Song EY1,2, Qu CF1,2,*, Raja C1, Morgenstern A3, Apostolidis C3, Allen BJ1,2.

1Centre for Experimental Radiation Oncology, Cancer Care Centre, St. George Hospital, and 2St. George Clinical School, UNSW, Kogarah, NSW 2217 Australia.

3Sydney Melanoma Unit, Royal Prince Alfred Hospital, Missenden Rd, European Commission, Joint Research Centre, Institute for Transuranium Elements, 76125 Karlsruhe, Germany.

The urokinase plasminogen activator (uPA) system is involved in cancer growth and metastasis. The plasminogen activator inhibitor type 2 (PAI2) and uPA can form a stable complex, which is bound to the cell surface uPA receptor (uPAR). We labeled PAI2 with 213Bi to form the alpha conjugate. This conjugate targets uPA/uPAR and has been found to have promising therapeutic properties for breast, prostate and pancreatic cancer. This paper reports studies of the acute and delayed toxicity in mice; the effect of lysine renal protection; pharmacokinetics; a comparison of CHX-A*-DTPA and cDTPA chelators, and in vivo 213Bi-PAI2 stability by Ca-DTPA challenge.

Pharmacokinetics of 213Bi-PAI2 in nude mice demonstrated that the kidneys were the critical organs for retention of Bismuth in the chelate complex. The CHX-A*-DTPA and cDTPA immunoconjugates were found to have similar %ID/kg in the kidney, with no significant retention of 213Bi evident in other organs such as liver, heart, lung, and spleen. Ca-DTPA chelators significantly reduced the renal 213Bi accumulation at 15 minutes, not for 30 and 120 minutes, indicating high in vivo stability of 213Bi-PAI2 and the need for pre-injection purification of conjugates.

The acute toxicity limit by weight loss was more than 450 MBq/kg. Mild to moderate, patchy tubular necrosis was observed accompanied by slight urea increase. Radiation nephritis was the source of lethal delayed toxicity arising at 20 - 30 weeks post-treatment, for which the maximum tolerance dose was 110 MBq/kg. Kidney uptake was not significantly decreased by lysine at 185 MBq/kg, nor was there any change in delayed toxicity.